Introduction to the Third Epigenome Informatics Workshop

NIH Roadmap Epigenomics Data Analysis and Coordination Center

March 5-6 2012 Houston, Texas

Workshop Objective:

Catalyze Conversion

of Epigenomic Profiling Data

into Biological Insights

through Integrative Analysis

- Methods (Assays, Data Processing)
- Standards (Metadata, Interoperability)
- Data Resources (Human Epigenome Atlas)
- •Tools (Epigenomic Toolset, Genboree Workbench)
- Use Cases / Case Studies
- Collaborative Opportunities / Networking / Exchange of Experience

Workshop Participants

Session 1

9:00 – 9:45 am Introduction to the Workshop – Aleks Milosavljevic

9:45 – 10:30 am Quantitative profiling of histone modifications, peak calling and segmentation of epigenomic signals, and small RNA analysis – Cristi Coarfa (EDACC)

10:30 – 11:15 am Methylome mapping using MeDIP-seq, WGBS and RRBS and analysis of allelic imbalances - Alan Harris (EDACC)

11:15 – 11:30 am *Break*

11:30 – 12:15 pm Whole-genome bisulfite sequencing: comparative analysis of programs for mapping bisulfite reads – Govind K Ramamoorthy (EDACC, Rob Waterland Laboratory)

12:15 – 1:00 pm *Methylome mapping using Illumina Human Methylome 450K arrays-* Bekim Sadikovic (Art Beaudet Laboratory)

Session 1

9:00 – 9:45 am Introduction to the Workshop – Aleks Milosavljevic

9:45 – 10:30 am Quantitative profiling of histone modifications, peak calling and segmentation of epigenomic signals, and small RNA analysis – Cristi Coarfa (EDACC)

10:30 – 11:15 am *Methylome mapping using MeDIP-seq, WGBS and RRBS and analysis of allelic imbalances -* Alan Harris (EDACC)

11:15 – 11:30 am Break

11:30 – 12:15 pm Whole-genome bisulfite sequencing: comparative analysis of programs for mapping bisulfite reads – Govind K Ramamoorthy (EDACC, Rob Waterland Laboratory)

12:15 – 1:00 pm *Methylome mapping using Illumina Human Methylome 450K arrays-* Bekim Sadikovic (Art Beaudet Laboratory)

Session 1

9:00 – 9:45 am Introduction to the Workshop – Aleks Milosavljevic

9:45 – 10:30 am Quantitative profiling of histone modifications, peak calling and segmentation of epigenomic signals, and small RNA analysis – Cristi Coarfa (EDACC)

10:30 – 11:15 am Methylome mapping using MeDIP-seq, WGBS and RRBS and analysis of allelic imbalances - Alan Harris (EDACC)

11:15 – 11:30 am *Break*

11:30 – 12:15 pm Whole-genome bisulfite sequencing: comparative analysis of programs for mapping bisulfite reads – Govind K Ramamoorthy (EDACC, Rob Waterland Laboratory)

12:15 – 1:00 pm *Methylome mapping using Illumina Human Methylome 450K arrays-* Bekim Sadikovic (Art Beaudet Laboratory)

Session 1

9:00 – 9:45 am Introduction to the Workshop – Aleks Milosavljevic

9:45 – 10:30 am Quantitative profiling of histone modifications, peak calling and segmentation of epigenomic signals, and small RNA analysis – Cristi Coarfa (EDACC)

10:30 – 11:15 am Methylome mapping using MeDIP-seq, WGBS and RRBS and analysis of allelic imbalances - Alan Harris (EDACC)

11:15 – 11:30 am *Break*

11:30 – 12:15 pm Whole-genome bisulfite sequencing: comparative analysis of programs for mapping bisulfite reads – Govind K Ramamoorthy (EDACC, Rob Waterland Laboratory)

12:15 – 1:00 pm *Methylome mapping using Illumina Human Methylome 450K arrays*- Bekim Sadikovic (Art Beaudet Laboratory)

Session 2

2:00 – 2:45 pm NIH Epigenomics Roadmap: reference epigenomes, metadata standards, interoperability, and integrative data analysis – Aleks Milosavljevic (EDACC)

2:45 – 3:15 pm Introduction to Genboree Workbench features that will be used in Case Studies - Aleks Milosavljevic (EDACC)

3:15 – 3:30 pm Break

3:30 – 5:00 pm Preparation for Case Studies on Day 2 – Setting up projects, databases, accessing files, navigating Genboree - Matt Roth, Kevin Riehle, Chia-Chin Wu, Yuan Yuan, Cristi Coarfa, Alan Harris, Aleks Milosavljevic

6:00 pm Depart for Houston Livestock Show & Rodeo <u>or</u> dinner on your own

Session 2

2:00 – 2:45 pm NIH Epigenomics Roadmap: reference epigenomes, metadata standards, interoperability, and integrative data analysis – Aleks Milosavljevic (EDACC)

2:45 – 3:15 pm Introduction to Genboree Workbench features that will be used in Case Studies - Aleks Milosavljevic (EDACC)

3:15 – 3:30 pm Break

3:30 – 5:00 pm Preparation for Case Studies on Day 2 – Setting up projects, databases, accessing files, navigating Genboree - Matt Roth, Kevin Riehle, Chia-Chin Wu, Yuan Yuan, Cristi Coarfa, Alan Harris, Aleks Milosavljevic

6:00 pm Depart for Houston Livestock Show & Rodeo <u>or</u> dinner on your own

Tuesday, March 6th 2012

Session 3

9:00 – 9:30 am *Review of Day 1 and of Case Studies* – Matt Roth (EDACC)

9:30 – 11:30 pm **Case Studies 1, 2, 5:** Epigenomic Variation between *Tissues (Part 1)* – Matt Roth, Kevin Riehle, Chia-Chin Wu, Yuan Yuan, Cristi Coarfa, Alan Harris, Aleks Milosavljevic

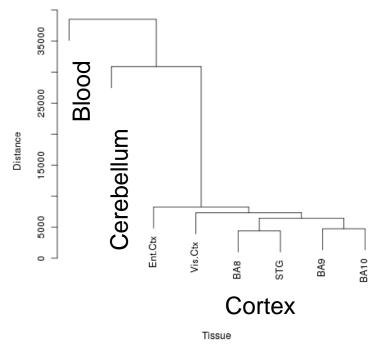
11:30 - 11:45 pm Break

11:45 – 1:00 pm **Case Studies 10, 9:** Epigenomic Variation Between *Tissues (Part 2)* – Matt Roth, Kevin Riehle, Chia-Chin Wu, Yuan Yuan, Cristi Coarfa, Alan Harris, Aleks Milosavljevic

The data for several of the workshop Use Cases was kindly provided by Dr. Jonathan Mill (King's College London, UK), and is under review for this publication:

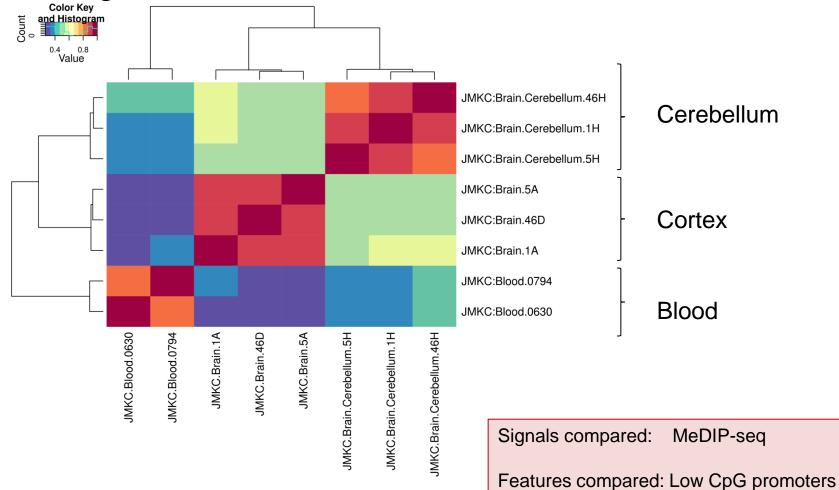
"Tissue-specific epigenetic variation across brain and blood: functional annotation of the human brain methylome". Matthew Davies¹, Manuela Volta¹, Abhishek Dixit¹, Simon Lovestone¹, Cristian Coarfa², R. Alan Harris², Aleksandar Milosavljevic², Claire Troakes¹, Safa Al-Sarraj¹, Richard Dobson¹, Leonard C. Schalkwyk¹, Jonathan Mill^{1*}

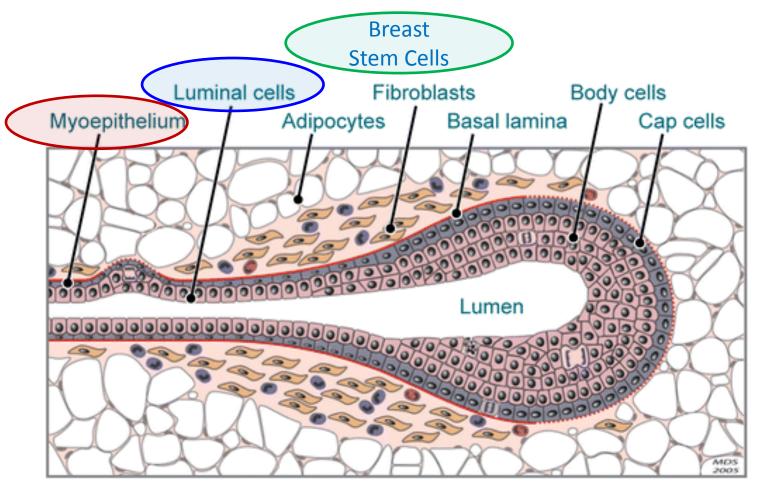
¹Institute of Psychiatry, King's College London. UK. ²Baylor College of Medicine, Houston, Texas. USA. *Corresponding Author: Dr. Jonathan Mill, Address: Institute of Psychiatry, SGDP Centre, De Crespigny Park, Denmark Hill, London.


Since the paper is under review (Davies et al), it can not be shared with anyone outside of the workshop at this time, and we ask that you consider the data confidential. We will notify you when the data can be shared. Thank you for your understanding.

MEDIPS-processed signal averaged over 500bp windows genome-wide

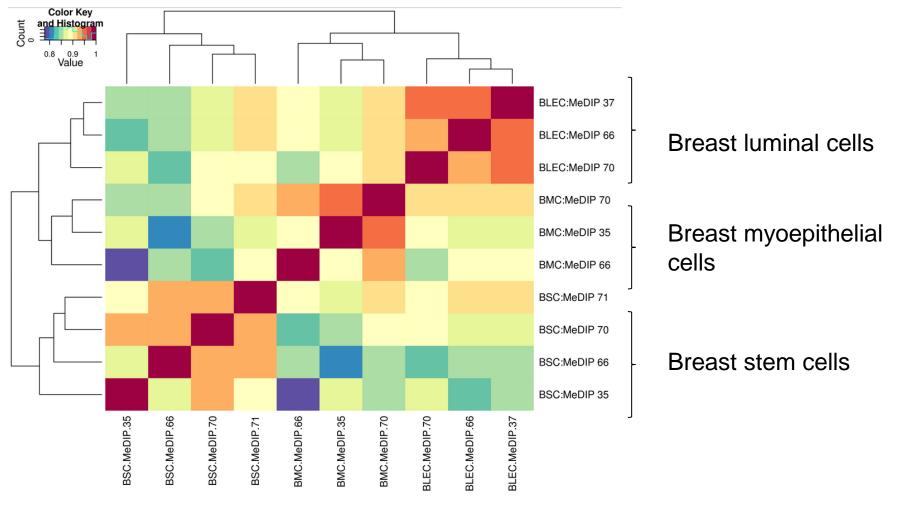
Pairwise correlation between signals


	BA9	BA10	BA8	STG	Ent Ctx	Vis Ctx	Cerebellum	Blood
BA9		0.97	0.95	0.94	0.92	0.92	0.57	0.64
BA10	0.97		0.96	0.95	0.94	0.93	0.59	0.66
BA8	0.95	0.96		0.96	0.92	0.92	0.57	0.58
STG	0.94	0.95	0.96		0.93	0.92	0.58	0.59
Ent Ctx	0.92	0.94	0.92	0.93		0.90	0.63	0.75
Vis Ctx	0.92	0.93	0.92	0.92	0.90		0.57	0.60
Cerebellum	0.57	0.59	0.57	0.58	0.63	0.57		0.49
Blood	0.64	0.66	0.58	0.59	0.75	0.60	0.49	



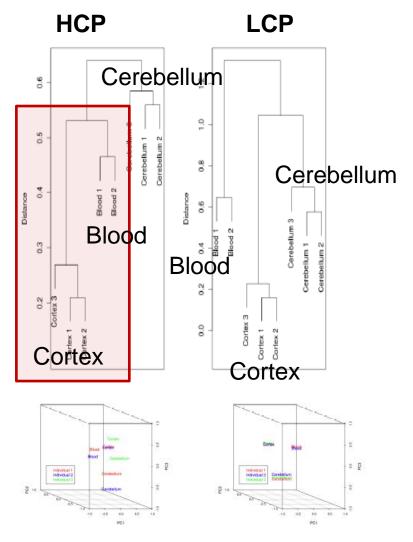
Davies, Volta et al. In Review

Use Case 1: Genomewide Patterns of Methylation can Distinguish Between Blood, Cerebellum, and Cortex


Use Case 2: Genomewide Patterns of Methylation can Distinguish Between Breast Cell Types

A Hebner C, et al. 2008. Annu. Rev. Pathol. Mech. Dis. 3:313–39

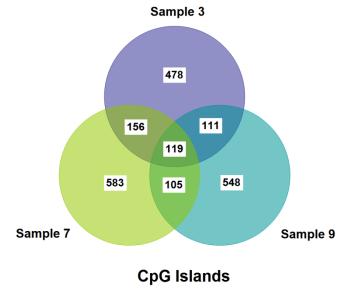
Use Case 2: Breast Cell Types Cluster Correctly Based on Their MeDIP-seq Profiles


(Epigenome Atlas and UCSF REMC data)

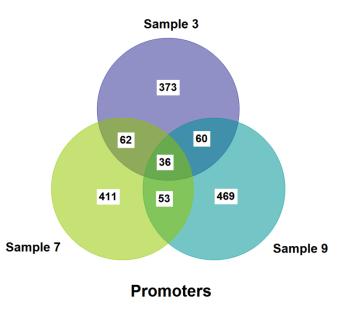
Data from: Epigenome Atlas, Release 5

Use Case 5: Methylation Profiles of Some Features More Informative About Cell Type Than Profiles of Others

Methylation of LCPs conveys more information about tissue type than methylation of HCPs.



Use Case 10: Methylation changes during CD4+ T-cell maturation (Epigenome Atlas and UCSF REMC data)

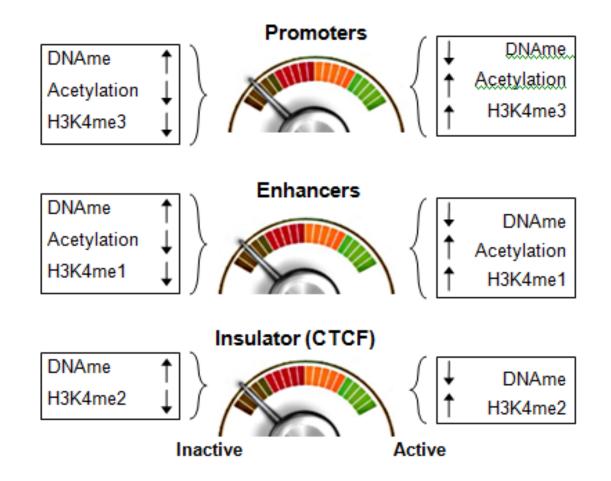

CD4+ Memory Primary T cells / CD4+ Naïve Primary T cells

methylation differences across 3 individuals

Genes with changes in associated CpG islands

Genes with changes in promoters

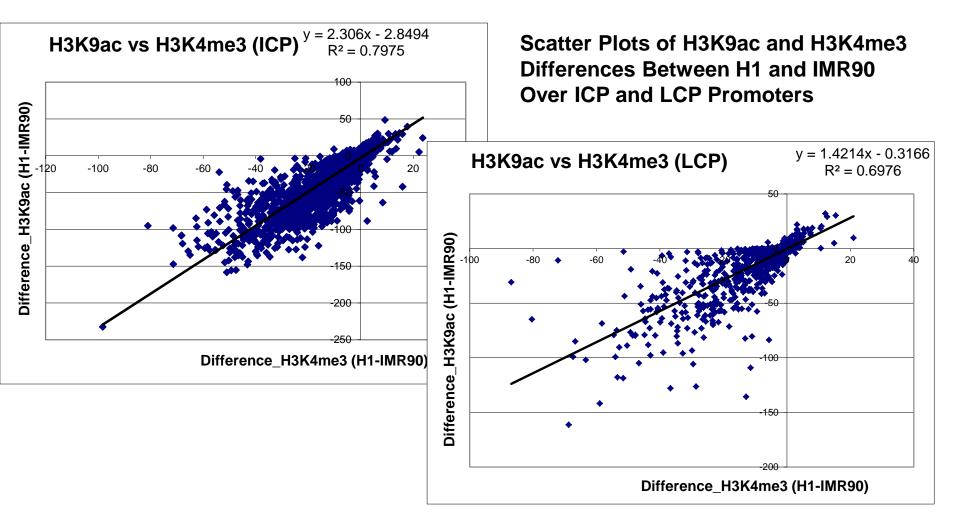
Use Case 10: Methylation changes during CD4+ T-cell maturation (Epigenome Atlas and UCSF REMC data)


Methylation changes in CpG islands

KEGG pathways (via DAVID web site):

Sublist	<u>Category</u>	¢ <u>Term</u>	¢ RT	Genes	Count	\$ _%	¢ <u>P-Value</u>	≑ <u>Benjamini</u> ≑
	KEGG_PATHWAY	T cell receptor signaling pathway	<u>RT</u>		5	5.9	2.3E-3	8.9E-2
	KEGG_PATHWAY 🔶	Natural killer cell mediated cytotoxicity	RT	=	5	5.9	4.9E-3	9.4E-2
	KEGG_PATHWAY	Wnt signaling pathway	RT		4	4.7	4.5E-2	4.6E-1
	KEGG_PATHWAY	Pathways in cancer	<u>RT</u>	=	5	5.9	9.2E-2	6.2E-1

Use Case 9: Coordinated Changes of Epigenomic Marks Across Tissue Types


"Active" or "inactive" states of TF binding elements (promoters, enhancers) may be inferred with certain probability based on the state of a handful of correlated epigenomic marks.

Use Case 9: Coordinated Changes of Epigenomic Marks Across Tissue Types

- High- and Intermediate CpG (HCP and ICP) promoters are regulated by different classes of TFs (including Polycomb complex) than Low-CpG (LCP) promoters.
- It is therefore possible that HCP, ICP, and LCP promoters experience different patterns of epigenomic changes during cellular differentiation.
- Approach: Examine changes in H3K9ac and H3K4me3 over HCP, ICP, and LCP promoters between an ES cell line (H1) and a fibroblast cell line (IMR90).

Use Case 9: Coordinated Changes of Epigenomic Marks Across Tissue Types

Tuesday, March 6th 2012

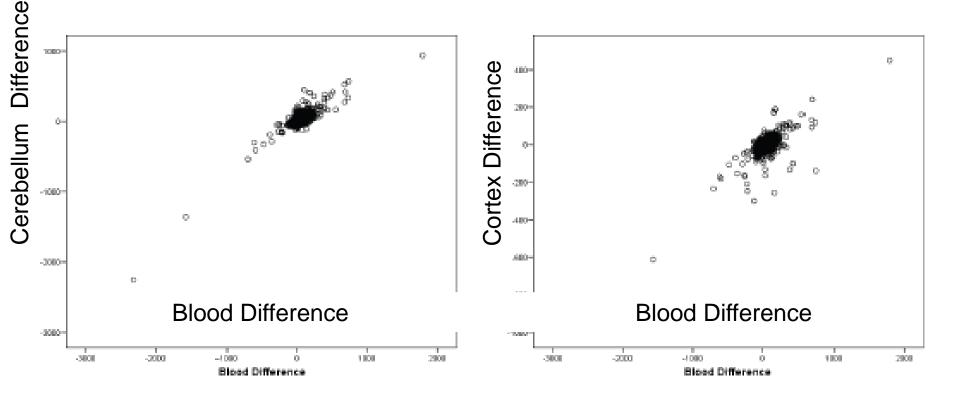
Session 4

2:00 – 3:30 pm **Case Study 7:** Epigenomic Variation Between Individuals – Matt Roth, Kevin Riehle, Chia-Chin Wu, Yuan Yuan, Cristi Coarfa, Alan Harris, Aleks Milosavljevic

3:30 – 4:30 pm *Case Studies: Epigenomic Variation in Cancer* – Matt Roth, Kevin Riehle, Chia-Chin Wu, Yuan Yuan, Cristi Coarfa, Alan Harris, Aleks Milosavljevic

4:30 – 5:00 pm Open discussion and wrap-up

5:00 pm Adjourn


Use Case 7: Detecting Coordinated Changes in Cortex, Cerebellum and Blood Between Individuals

Data Source: Matthew Davies, M. et al. (submitted) "Tissuespecific epigenetic variation across brain and blood: functional annotation of the human brain methylome". Use Case 7: Detecting Coordinated Changes in Cortex, Cerebellum and Blood Between Individuals

- To which extent the easily accessible peripheral tissue (e.g. whole blood) can be used to ask questions about inter-individual phenotypic variation manifest in a phenotypically relevant but inaccessible tissue such as brain.
- It is also of interest to delineate inter-individual differences that are genetic (say, due to copy-number polymorphisms) from those that may arise due to environmental, developmental, and physiological differences and disease processes.

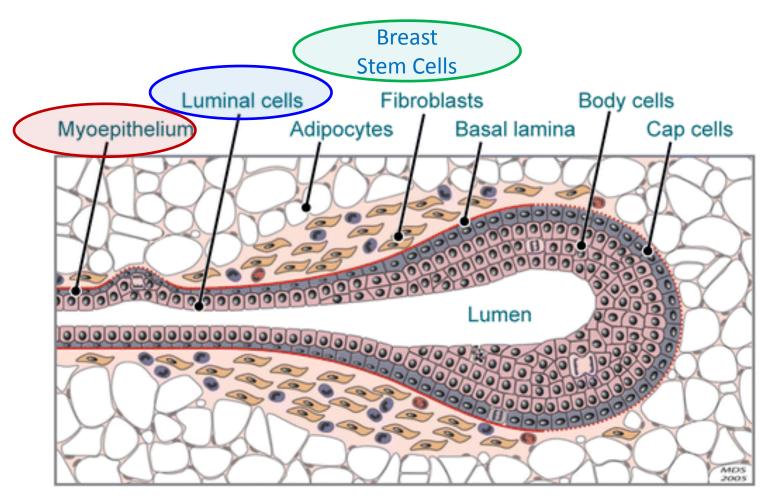
Use Case 7: Detecting Coordinated Changes in Cortex, Cerebellum and Blood Between Individuals

Between-individual variation in DNA methylation is correlated between blood and brain

Davies, Volta et al. In Review

Tuesday, March 6th 2012

Session 4

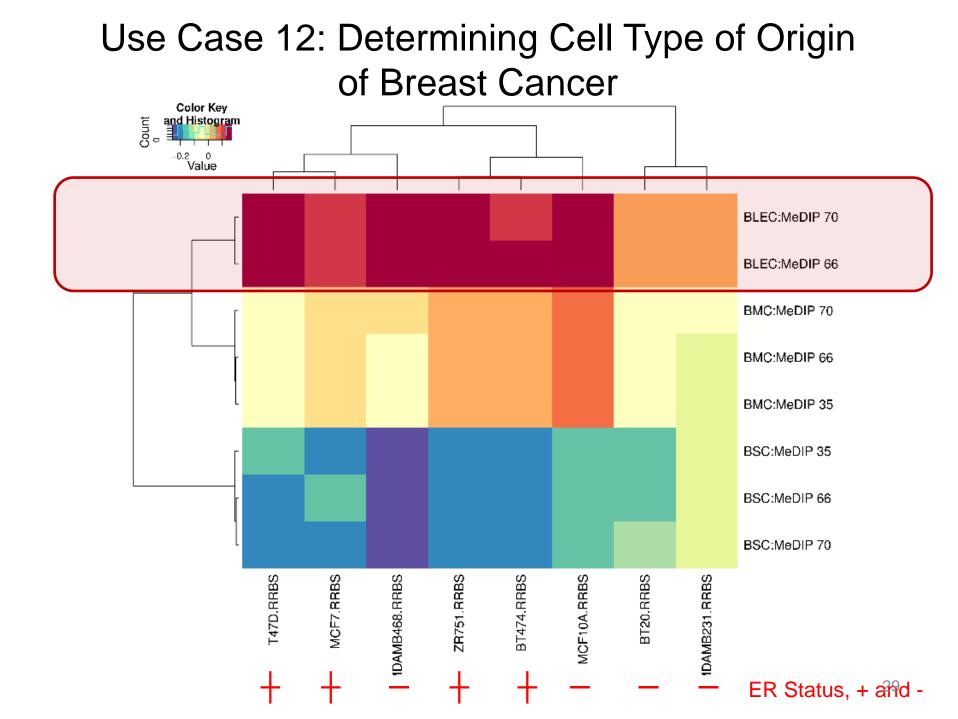

2:00 – 3:30 pm *Case Studies: Epigenomic Variation Between Individuals* – Matt Roth, Kevin Riehle, Chia-Chin Wu, Yuan Yuan, Cristi Coarfa, Alan Harris, Aleks Milosavljevic

3:30 – 4:30 pm **Case Studies 12, 13:** Epigenomic Variation in Cancer – Matt Roth, Kevin Riehle, Chia-Chin Wu, Yuan Yuan, Cristi Coarfa, Alan Harris, Aleks Milosavljevic

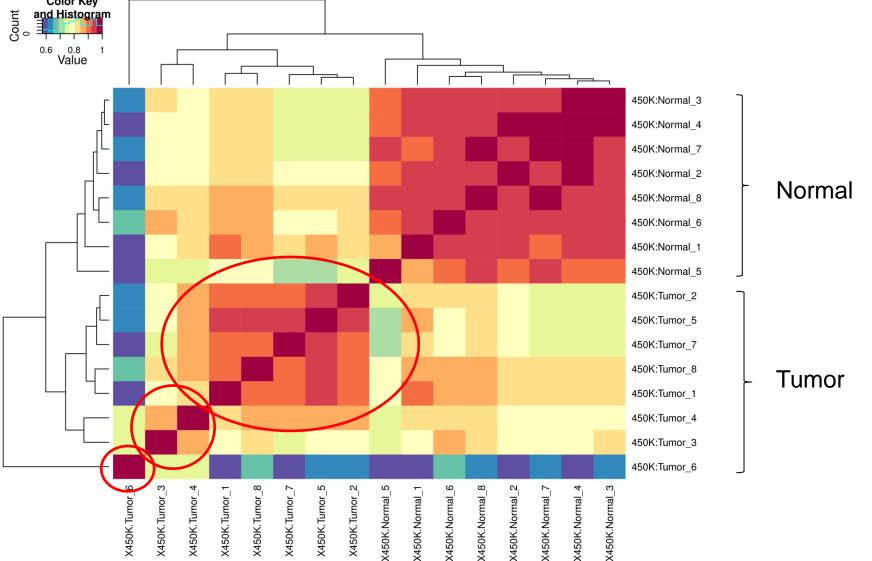
4:30 – 5:00 pm Open discussion and wrap-up

5:00 pm Adjourn

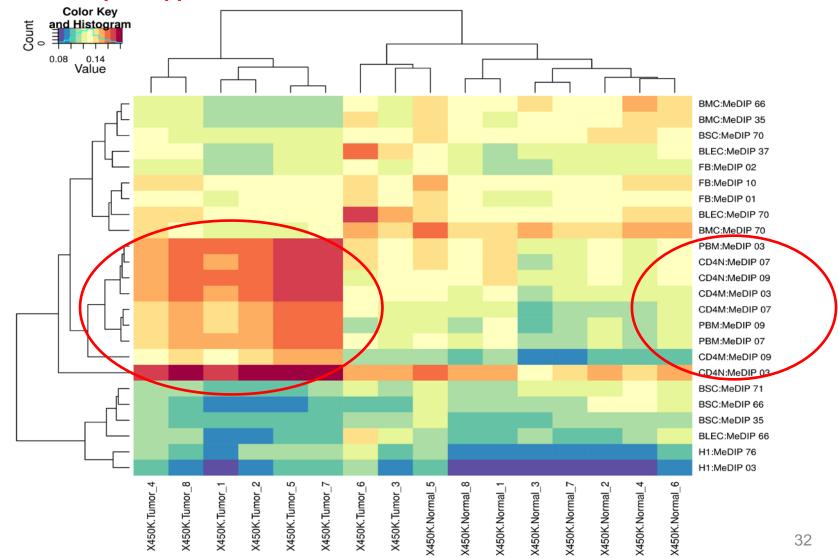
Use Case 12: Determining Cell Type of Origin of Breast Cancer


A Hebner C, et al. 2008. Annu. Rev. Pathol. Mech. Dis. 3:313–39

Use Case 12: Determining Cell Type of Origin of Breast Cancer


Compare profiles of 4 ER+ and 4 ER- breast cancer cell lines (RRBS profiles)¹ against the reference epigenomes of normal breast cell types (MeDIP-seq profiles) from the Human Epigenome Atlas.

Data Source:


¹ Sun, Z., et al. (2011) Integrated Analysis of Gene Expression, CpG Island Methylation, and Gene Copy Number in Breast Cancer Cells by Deep Sequencing. PLoS ONE 6(2): e17490.

- Data Source: Dedeurwaerder, S.et al. (2011) "Evaluation of the Infinium Methylation 450K technology", Epigenomics 3(6):771-84.
- **16 breast tissue samples were profiled** (8 normal, 8 primary tumor samples)
- The paper evaluates 450K technology and does not report any analysis concerning cancer biology.
- We analyze the data to explore epigenomic states and cell type composition of normal and tumor samples.

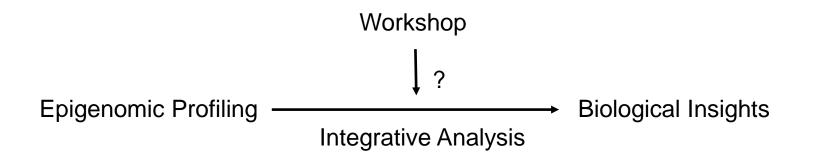
Most tumor samples appear to contain more blood and immune cells than normal tissue.

- Most breast tumor samples appear to contain an excess of blood and immune cells.
- Comparison of normal and tumor tissue should therefore reveal differentially methylated genes that are involved in immunity-related pathways or biological processes.

	GOTERM_BP_FAT neurological system process	RT	166	12.9 ^{3.8E-} 1.2E-14	
	GOTERM_BP_FAT sensory perception of smell	<u>RT</u>	76	5.9 ^{1.1E-} ₁₃ 1.8E-10	
	GOTERM_BP_FAT sensory perception	RT	115	9.0 2.1E- 13 2.2E-10	
	GOTERM_BP_FAT G-protein coupled receptor protein signaling pathway	RT	144	11.2 4.5E- 13 3.5E-10	
	GOTERM_BP_FAT cognition	<u>RT</u>	123	9.6 8.6E- 13 5.4E-10	
	GOTERM_BP_FAT sensory perception of chemical stimulus	<u>RT</u>	79	6.2 1.1E- 6.0E-10	
	GOTERM_BP_FAT cell surface receptor linked signal transduction	<u>RT</u>	207	16.1 1.6E- 7.3E-10	
	GOTERM_BP_FAT defense response	<u>RT</u>	92	7.2 4.4E- 1.7E-9	
	GOTERM_BP_FAT cell-cell signaling	<u>RT</u>	90	7.0 ^{6.7E-} 2.3E-9	
	GOTERM_BP_FAT cell adhesion	<u>RT</u>	98	7.6 3.9E- 11 1.2E-8	
	GOTERM_BP_FAT biological adhesion	<u>RT</u>	98	7.6 4.2E- 11 1.2E-8	
	GOTERM_BP_FAT immune response	<u>RT</u>	96	7.5 9.1E- 11 2.4E-8	
	GOTERM_BP_FAT homophilic cell adhesion	<u>RT</u>	30	2.3 ^{2.1E-} 5.1E-6	
	GOTERM_BP_FAT cell-cell adhesion	<u>RT</u>	46	3.6 ^{8.0E-} 1.8E-5 8	
	GOTERM_BP_FAT feeding behavior	<u>RT</u>	20	1.6 ^{1.5E-} ₇ 3.2E-5	
	GOTERM_BP_FAT behavior	<u>RT</u>	65	5.1 ^{1.7E-} 3.4E-5 7	
	GOTERM_BP_FAT synaptic transmission	<u>RT</u>	47	3.7 ^{3.0E-} 5.5E-5 7	
	GOTERM_BP_FAT transmission of nerve impulse	<u>RT</u>	52	4.1 ^{4.3E-} 7.5E-5	
	GOTERM_BP_FAT cell activation	<u>RT</u>	45	3.5 ^{6.6E-} ₇ 1.1E-4	
<	GOTERM_BP_FAT positive regulation of immune system process	<u>RT</u>	38	3.0 ^{3.6E-} 5.7E-4	
<	GOTERM_BP_FAT inflammatory response	<u>RT</u>	46	3.6 ^{8.2E-} 1.2E-3 6	

Tuesday, March 6th 2012

Session 4


2:00 – 3:30 pm *Case Studies: Epigenomic Variation Between Individuals* – Matt Roth, Kevin Riehle, Chia-Chin Wu, Yuan Yuan, Cristi Coarfa, Alan Harris, Aleks Milosavljevic

3:30 – 4:30 pm *Case Studies: Epigenomic Variation in Cancer* – Matt Roth, Kevin Riehle, Chia-Chin Wu, Yuan Yuan, Cristi Coarfa, Alan Harris, Aleks Milosavljevic

4:30 – 5:00 pm Open discussion and wrap-up

5:00 pm Adjourn

Workshop Evaluation

- Methods (Assays, Data Processing)
- Standards (Metadata, Interoperability)
- Data Resources (Human Epigenome Atlas)
- •Tools (Epigenomic Toolset, Genboree Workbench)
- Use Cases / Case Studies
- Collaborative Opportunities / Networking / Exchange of Experience

NIH Roadmap Epigenomics: Reference Epigenomes and the Human Epigenome Atlas

NIH Roadmap Epigenomics Data Analysis and Coordination Center

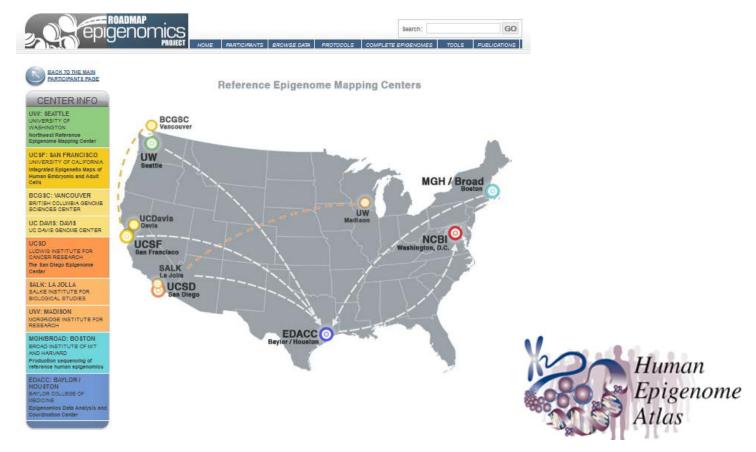
March 5-6 2012 Houston, Texas

NIH Roadmap Epigenomics Project

Hypothesis:

Origins of health and susceptibility to disease are, in part, result of epigenetic regulation

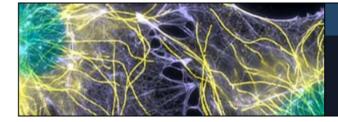
 Goal:


 Transform biomedical research by

 • Developing comprehensive reference epigenome maps

 • Developing new technologies for epigenomic analyses

 Including **cyberinfrastructure** for epigenomic research


NIH Roadmap Epigenomics Project: Data Flow

Quarterly cumulative releases of the Human Epigenome Atlas

(Human Epigenome Atlas Release 6 being completed)

Epigenomics Portal at NCBI

Epigenomics

Genomics maps of stable, yet reprogrammable nuclear changes that control gene expression and influence our health.

How to... How to Use the Sample Browser

How to use the Sample Browser

How to Manage Collections of Samples

How to View Genome Tracks

How to Download Genome Tracks

Epigenomics Tools

Browse Experiments

Browse Samples

Compare Samples Beta

Advanced Search

Scientific Background

About Epigenetics

About DNA Methylation

About Histone Modifications

About Chromatin Structure

Latest Studies

CTCF Binding Sites by ChIP-seq from ENCODE/	University of								
Washington	[ESS000141]								
Genome-wide remodeling of the epigenetic land	Iscape during								
myogenic differentiation	[ESS000133]								
Histone Modifications by ChIP-seq from ENCODE	E/Broad								
Institute	[ESS000130]								
DNasel hypersensitivity by digital DNasel from ENCODE/University of Washington	[ESS000129]								
The Cohesin Complex Cooperates with Pluripotency Transcription Factors in the Maintenance of Embi [ESS000137]									

NIH Roadmap Epigenomics

About the Project Reference epigenome maps and their applications to human health.

Roadmap Epigenomics Web Resources

Roadmap Data in GEO

Data Access Policies

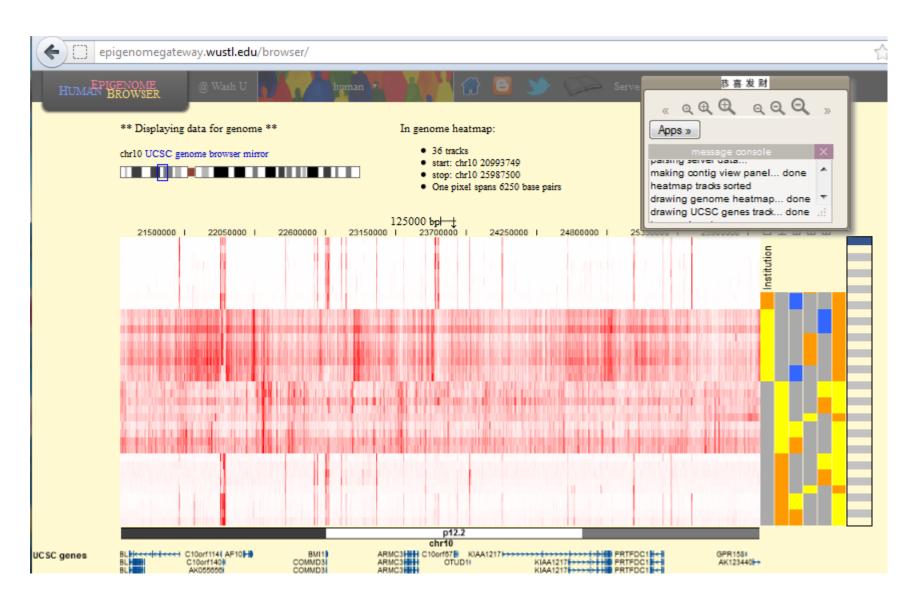
Recent Review Articles

Epigenetics in disease and cancer.

	[Malays J Pathol. 2011]									
Role of TGF- β and the tumor micros	environment during									
mammary tumorigenesis.	[Gene Expr. 2011]									
[Epigenetic regulation of transcription in heart development]. [Seikagaku, 2011]										

[Neurobiology of suicidal behaviour].

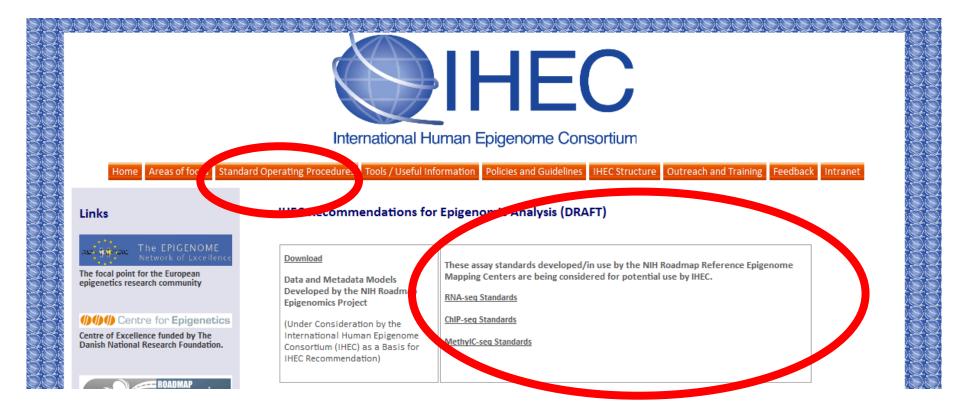
[Psychiatr Pol. 2011]


Histone methylation makes its mark on longevity.

[Trends Cell Biol. 2012]

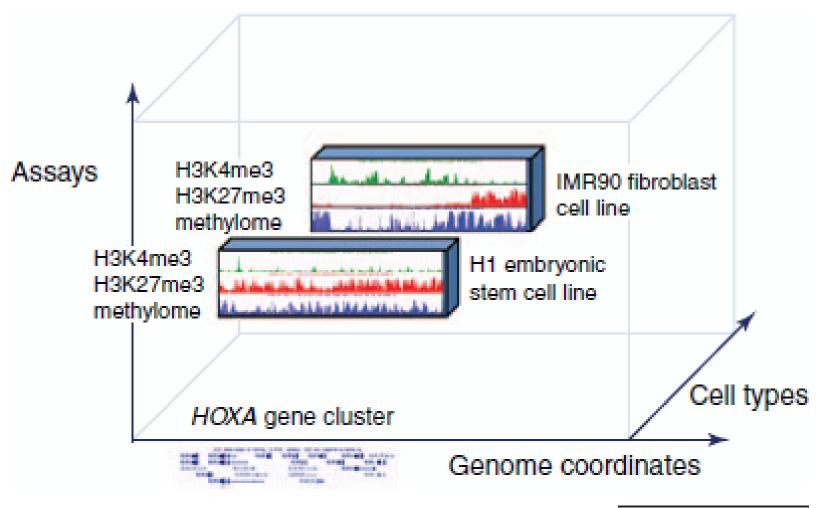
See more ...

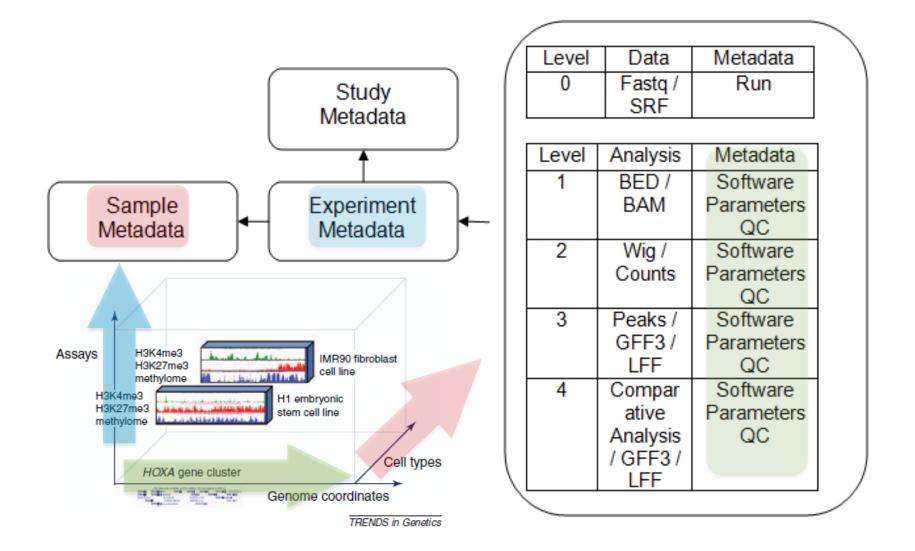
- 0	-	=	 U 1	-		


Human Epigenome Browser at Wash U

Epigenomic Data

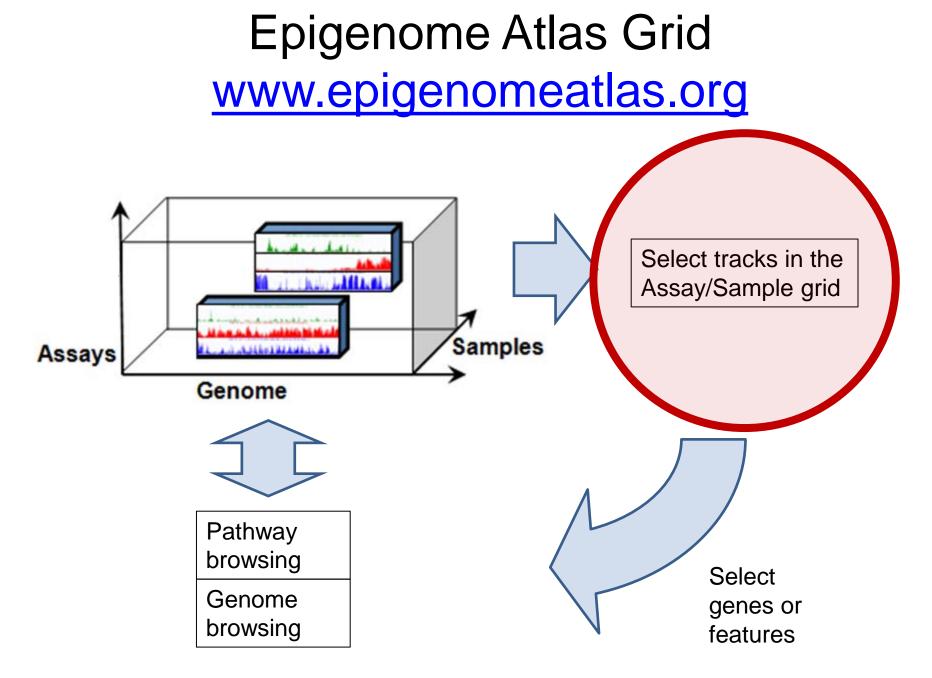
	"chip" data	"seq" data								
Level 0	image	reads								
Level 1	extracted features	mapped reads								
Level 2	normalized intensities	read density maps								
Level 3	epigenomic state (per feature such as enhancer or genomic segments outside of features)									
Level 4	comparative analysis results (e.g., cell type – specific state)									


Epigenomic Data Standards www.ihec-epigenomes.org



www.epigenomeatlas.org

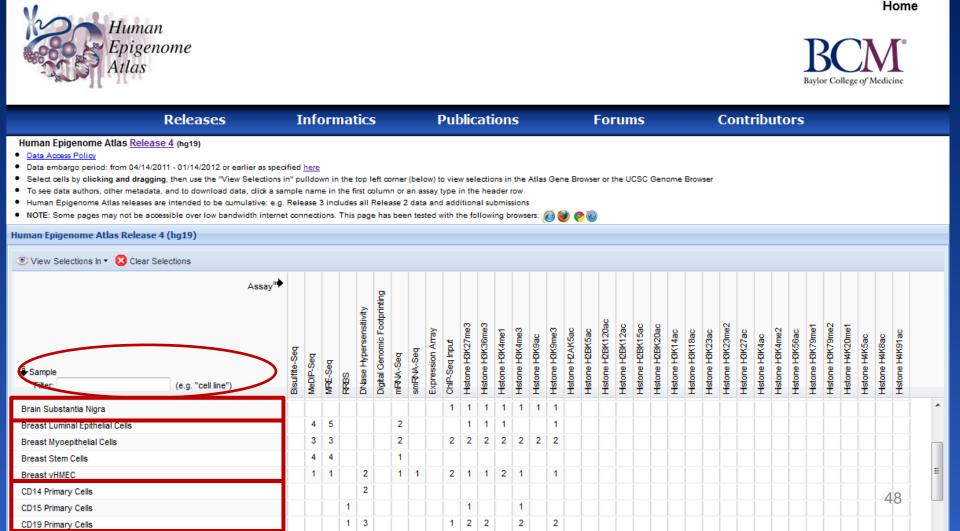
TRENDS in Genetics


Epigenomic Metadata

Epigenomic MetaData Standards www.ihec-epigenomes.org

The data produced by the NIH Epigenomcs Roadmap Initiative is illustrated in Figure 1

Epigenome Atlas Release 5 over 1500 experiments www.epigenomeatlas.org



Home

Rele	eases	Ir	nfo	rma	tics	5			Р	ub	olica	atic	ons	;				Fo	run	ıs				С	ont	ribu	uto	rs						
Human Epigenome Atlas Release 4 (hg19) Data Access Policy Data embargo period: from 04/14/2011 - 01/14/2012 or earlier as specified here Select cells by clicking and dragging, then use the "View Selections in" pulldown in the top left corner (below) to view selections in the Atlas Gene Browser or the UCSC Genome Browser To see data authors, other metadata, and to download data, click a sample name in the first column or an assay type in the header row Human Epigenome Atlas releases are intended to be cumulative: e.g. Release 3 includes all Release 2 data and additional submissions NOTE: Some pages may not be accessible over low bandwidth internet connections. This page has been tested with the following browsers: See See See See See See See See See Se																																		
Human Epigenome Atlas Release 4 (hg19)																																		
View Selections In • 😢 Clear Selections																																		
Filter: (e.g	Assay	Bisulfite-Seq	MeDIP-Seq	Mrt-Seq RTBS	DNase Hypersensitivity	Digital Genomic Footprinting	mRNA-Seq	smRVA-Seq	Expression Array	ChIP-Seq Input	Histone H3K27me3	Histone H3K36me3	Histone H3K4me1	Hstone H3K4me3	Histone H3K9ac	Histone Horvanieo Histone HOAKSac	Histone H2BK5ac	Hstone H2BK120ac	Histone H2BK12ac	Histone H2BK15ac	Histone H2BK20ac	Histone H3K14ac	Histone H3K16ac	Histone H3K23me2	Histone H3K27ac	Histone H3K4ac	Histone H3K4me2	Histone H3K56ac	Histone H3K79me1	Hstone H3K/9me2	Histone H4K20me1	Histone H4K5ac Histone H4K8ac	Histone H4K91ac	
Brain Substantia Nigra										1	1	1	1	1	1	1																		
Breast Luminal Epithelial Cells			4	5			2				1	1	1			1																		
Breast Myoepithelial Cells			3	3			2			2	2	2	2	2	2	2																		
Breast Stem Cells			4	4			1																											
Breast vHMEC			1	1	2		1	1		2	1	1	2	1		1																		
CD14 Primary Cells					2																												47	
CD15 Primary Cells				1						ĺ	1			1																			- /	
CD19 Primary Cells				1	3					1	2	2		2		2																		

Epigenome Atlas Release 5 www.epigenomeatlas.org

Epigenome Atlas Release 5 www.epigenomeatlas.org

Human Epigenome Atlas Release 4 (hg19)

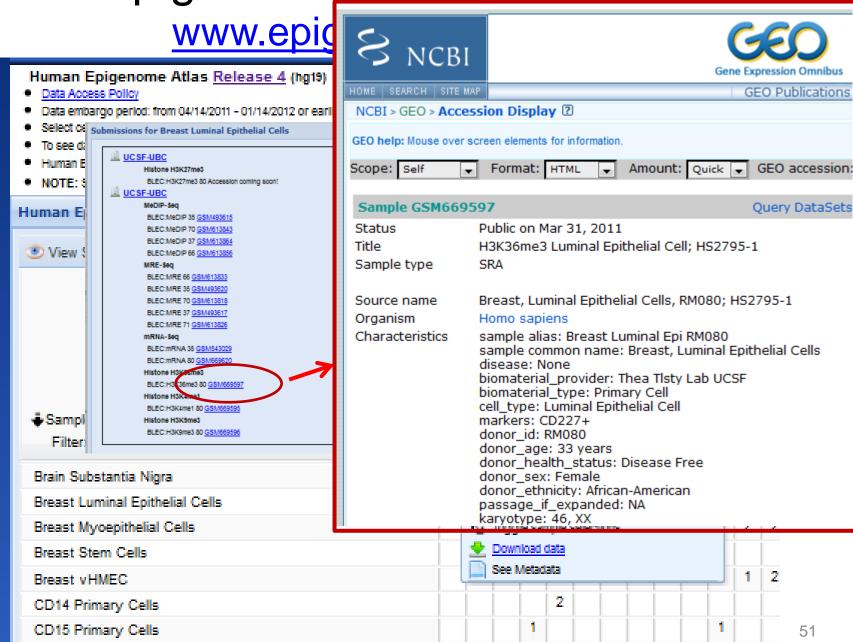
- Data Access Policy
- Data embargo period: from 04/14/2011 01/14/2012 or earlier as specified here
- Select cells by clicking and dragging, then use the "View Selections in" pulldown in the top left corner (below) to view selections in the Atlas Gene B
- To see data authors, other metadata, and to download data, click a sample name in the first column or an assay type in the header row
- Human Epigenome Atlas releases are intended to be cumulative: e.g. Release 3 includes all Release 2 data and additional submissions.
- NOTE: Some pages may not be accessible over low bandwidth internet connections. This page has been tested with the following browsers: 🔬 🤕

Human Epigenome Atlas Release 4 (hg19)

View Selections In • 🔀 Clear Selections Digital Genomic Footprinting Assav" ONase Hypersensitivity Histone H3K27me3 Histone H3K36me3 H3K4me1 Expression Array ChIP-Seq Input **Sisulfite-Seq** mRNA Seq mRNA Seq vle DIP-Seq MRE-Seq **Histone** 🕹 Sample RRBS (e.g. "cell line") Filter: Brain Substantia Nigra **Breast Luminal Epithelial Cells** Breast Luminal Epithelial Cells 🔀 Breast Myoepithelial Cells 2 Toggle sample selections. 2 Download data Breast Stem Cells See Metadata 2 Breast vHMEC 2 CD14 Primary Cells 1 1 **CD15 Primary Cells CD19 Primary Cells** 1 3 1 2 2

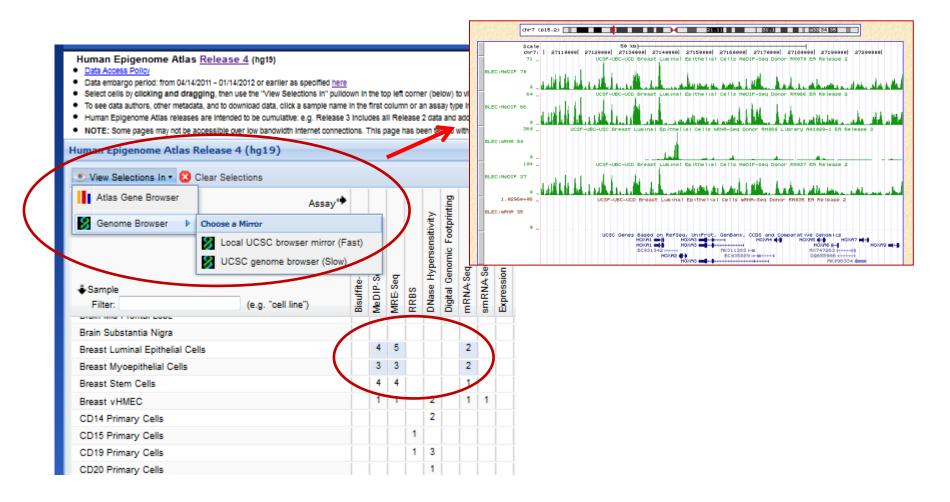
49

Epigenome Atlas Release 5 www.epigenomeatlas.org

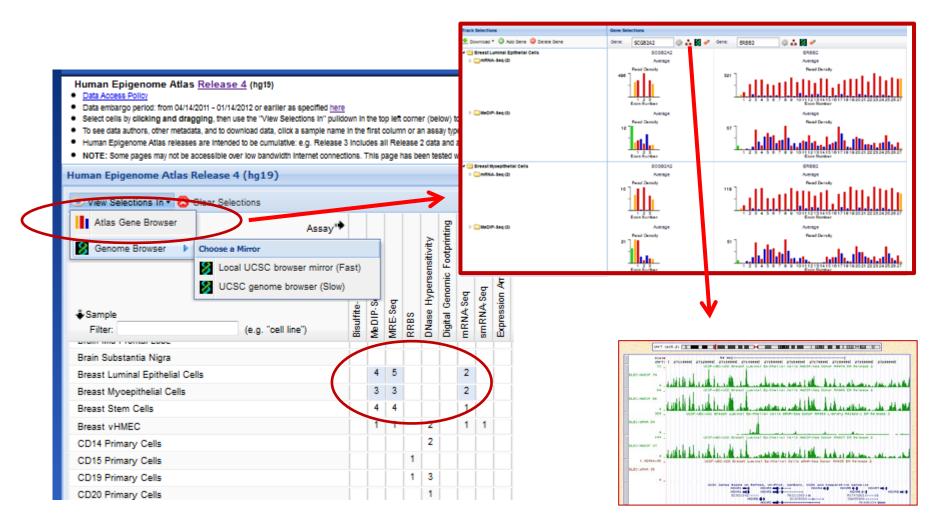

Human Epigenome Atlas Release 4 (hg19)

- Data Access Policy
- Data embargo period: from 04/14/2011 01/14/2012 or earlier as specified here

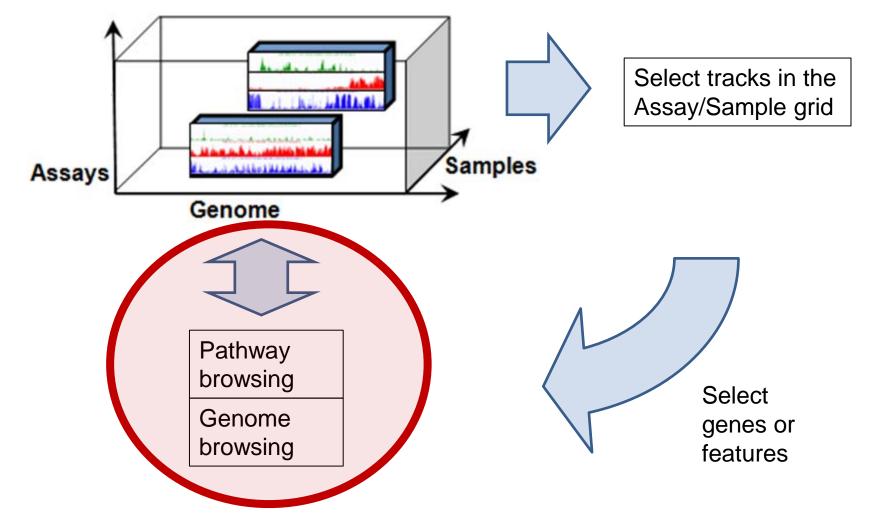
 Select ca 	Submissions for Breast Luminal Epithelial Cells	×	wn In	the to	op left	t com	er (be	:low) (to viev	v sele	ction	s in th	ie Atla	as Ger	ie B
 To see d; 		, e	in the	first	colum	nn or a	an ass	say typ	pe in t	he he	ader i	row i			
 Human E 	UCSF-UBC Histone H3K27me3	2	Inclu	ides a	ill Re	lease	2 dat	a and	addit	ional s	submi	Ission	18		
NOTE:		ct	ons."	This p	pagel	has b	een te	sted	with tr	ne foll	owing	j brov	vsers:	0	۲
Human E	MeDIP-Seq BLEC:MeDIP 35 <u>GSM493615</u>														
• View {	BLEC:MeDIP 70 <u>GSM613843</u> BLEC:MeDIP 37 <u>GSM613864</u> BLEC:MeDIP 66 <u>GSM613856</u> MRE-Seq														
∳Sampl Filter	BLEC:MRE 66 <u>GSM613833</u> BLEC:MRE 73 <u>GSM493620</u> BLEC:MRE 73 <u>GSM493620</u> BLEC:MRE 71 <u>GSM613826</u> mRNA-Seq BLEC:mRNA 35 <u>GSM543029</u> BLEC:mRNA 30 <u>GSM669592</u> Histone H3K36me3 80 <u>GSM669597</u> Histone H3K4me1 80 <u>GSM669595</u> Histone H3K4me3 80 <u>GSM669595</u> Histone H3K3me3 80 <u>GSM669596</u>	•	Sisulfite-Seq	VeDIP-Seq	MRE-Seq	RRBS	ONase Hypersensitivity	Digital Genomic Footprinting	nRNA Seq	smRNA Seq	Expression Array	ChIP-Seq Input	Histone H3K27me3	Histone H3K36me3	Histone H3K4me1
			ö	Ξ.	Σ	Ω.		ā	E	ō	Ш	ō	Ŧ	Ĩ	I
Brain Sul	bstantia Nigra 💦											1	1	1	1
Breast L	uminal Epithelial Cells		2	Bre	east	t Lu	mina	al Ej	pith	elial	Ce	lls (×	1	1
Breast M	lyoepithelial Cells			5	Togg	gle sa	mple	selec	tions					2	2
Breast S	item Cells			*	Dow										
Breast v	HMEC	•	\leq		See	Meta	jata							\triangleright	2
CD14 Pr	imary Cells						2								
CD15 Pr	imary Cells					1							1		
CD19 Pr	imary Cells		Ì	Ì	1	1	3	1	Ì	Ì	1	1	2	2	

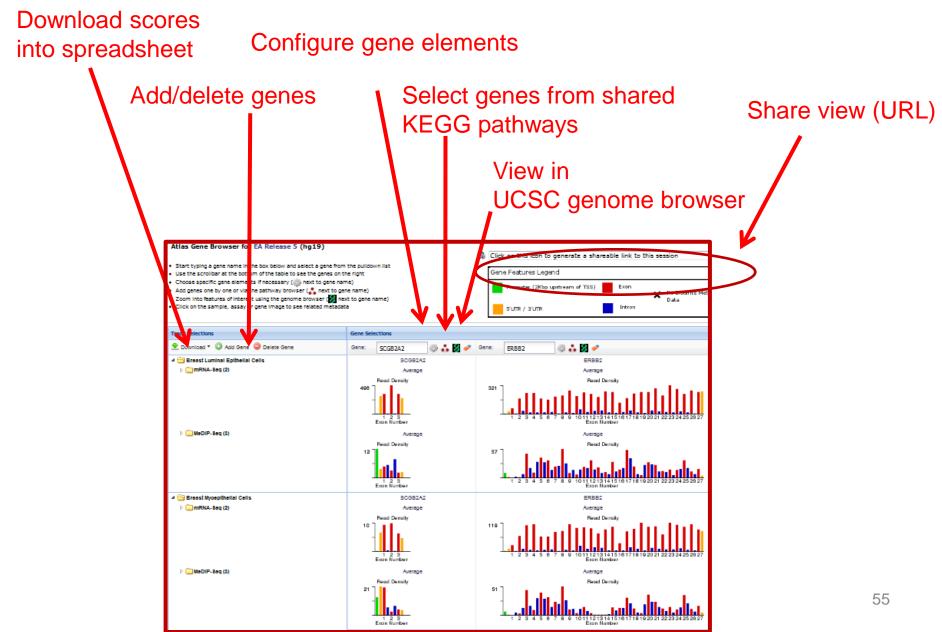

50

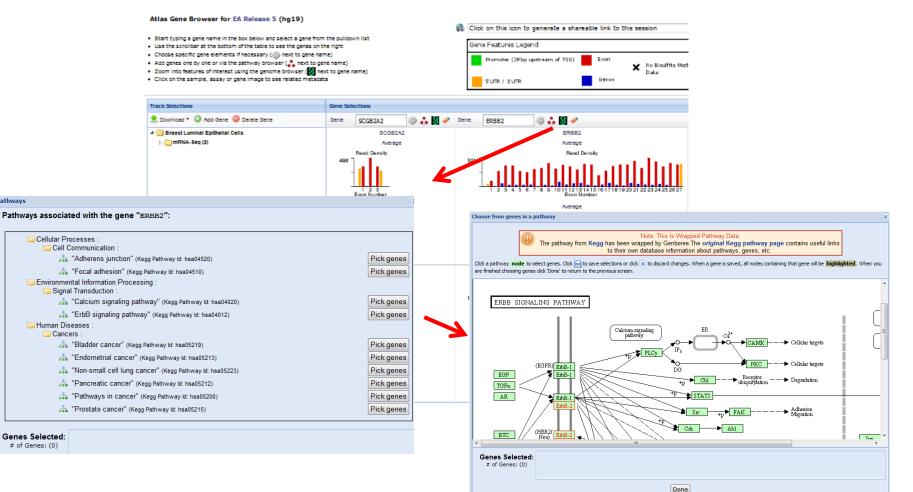
Epigenome Atlas Release 5



 CD19 Primary Cells


Viewing selections


Viewing selections


Epigenome Atlas Grid and the Atlas Gene Browser

Atlas Gene Browser

Including More Genes in the Same Pathway

Pathways