nature biotechnology

Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications

R Alan Harris^{1,*}, Ting Wang², Cristian Coarfa¹, Raman P Nagarajan³, Chibo Hong³, Sara L Downey³, Brett E Johnson³, Shaun D Fouse³, Allen Delaney⁴, Yongjun Zhao⁴, Adam Olshen³, Tracy Ballinger⁵, Xin Zhou², Kevin J Forsberg², Junchen Gu², Lorigail Echipare⁶, Henriette O'Geen⁶, Ryan Lister⁷, Mattia Pelizzola⁷, Yuanxin Xi⁸, Charles B Epstein⁹, Bradley E Bernstein^{9–11}, R David Hawkins¹², Bing Ren^{12,13}, Wen-Yu Chung^{14,15}, Hongcang Gu⁹, Christoph Bock^{9,16–18}, Andreas Gnirke⁹, Michael Q Zhang^{14,15}, David Haussler⁵, Joseph R Ecker⁷, Wei Li⁸, Peggy J Farnham⁶, Robert A Waterland^{1,19}, Alexander Meissner^{9,16,17}, Marco A Marra⁴, Martin Hirst⁴, Aleksandar Milosavljevic¹ & Joseph F Costello³

Alan Harris

3rd Epigenome Informatics Workshop March 5, 2012

DNA Methylation

- C5 position of cytosines primarily in CpGs, but also in non-CpGs primarily in embryonic stem cells
- CpG Islands
- Regulation of cellular processes
 - Transcription
 - Defense against endogenous retroviruses
 - Embryonic development
 - X chromosome inactivation
 - Imprinting

DNA Methylation Methods

Bisulfite-based Methods

- MethylC-seq: whole genome shotgun bisulfite sequencing
- RRBS: Reduced Representation Bisulfite Sequencing
 - Mspl digestion

Enrichment-based Methods

- MeDIP-seq: Methylated DNA Immunoprecipitation
 - 5-methylcytosine antibody
- MBD-seq: Methyl-Binding Domain
 - MBD2 protein methyl-CpG binding domain
- MRE-seq: Methylation-sensitive Restriction Enzyme
 - Parallel Hpall, Hin6I, and Acil digestion

DNA Methylation Methods

Joint REMCs-EDACC et al, publication

H1 ESC Samples

• 3 Biological Replicates Assayed

- #1 Passage 30
- #2 Passage 32
- #3 Passage 27
- Establish reproducibility across replicates

Infinium 27K Array Reproducibility

RRBS Reproducibility

MeDIP-seq and MRE-seq Reproducibility

Sequencing and Repeat Coverage

Method	H1 DNA sample #	Total bases generated (Gbp)	Total high quality bases (Gbp)	Total bases in map (Gbp)	Maximum resolution (bp)	1-read coverage of CpGs in repeats (# ,%)	Percentage of assayed CpGs in repeats (%)
MethylC-seq	#3	172.49	115	87.5	1	13,303,415 (91.8)	49.7
RRBS	#3	1.58	1.43	1.28	1	1,646,649 (11.4)	47.5
MeDIP-seq	#1	3.42	2.07	1.95	150	10,004,670 (68.3)	52.9
MeDIP-seq	#2	3.02	1.84	1.73	150	10,101,868 (68.9)	53.2
MeDIP-seq	#1+#2	6.44	3.91	3.68	150	11,693,059 (79.8)	53.5
MBD-seq	#2	5.67	3.71	2.21	150	10,080,007 (68.8)	59.1
MRE-seq	#1	3.61	1.31	0.96	1	306,635 (2.07)	21.7
MRE-seq	#2	4.03	1.69	1.3	1	232,885 (1.59)	18.6

Genome-wide and CGI Coverage

Coverage per Gbp of sequence

Read coverage threshold for CpGs

Overlap of Methylome Coverage

Method(s)	Genome-wide CpGs covered by method(s)				
Coverage by 4 methered					
MethylC, RRBS, MeDIP, MBD	6.32%				
Coverage by 3	methoas				
MethylC, RRBS, MeDIP 0.81%					
MethylC, RRBS, MBD	1.400/				
MethylC, MeDIP, MBD	39.09%				
RRBS, MeDIP, MBD	0.31%				
Coverage by 2 methods					
MethylC, RRBS	2.30%				
MethylC, MeDIP	19.95%				
MethylC, MBD	10.27%				
RRBS, MeDIP	0.03%				
RRBS, MBD	0.68%				
MeDIP, MBD	0.61%				
Coverage by 1 method					
MethylC	14.73%				
RRBS	0.37%				
MeDIP	DIP 0.09%				
IBD 1.77%					
No coverage					
None	1.21%				

MethylC-seq RRBS CpG Comparison

MethylC-seq RRBS Non-CpG Comparison

^{191,647} Non-CpGs (Minimum 5 Reads)

MeDIP-seq MBD-seq Comparison

a	Minimum	1000bp Windows			200bp Windows			
	Read	Number of	% Genome-	%	Number of	% Genome-	%	
	Depth	Windows	wide CpGs	Concordant	Windows	wide CpGs	Concordant	
	2	1,189,545	61.82%	98.80%	2,136,710	37.96%	92.41%	
	5	446,096	32.65%	99.80%	753,329	17.72%	99.01%	
	10	162,661	15.07%	100.00%	273,767	7.74%	99.97%	

MeDIP-seq MBD-seq Comparison

All Method Comparison

а		Minimum read depth of 5 199.438 windows	Minimum read depth of 10 87,363 windows	
	(18. Methods	01% of genome-wide CpGs) Percent windows	(9.39% of genome-wide CpGs) Percent windows	
	(MethylC, RRBS, MeDIP, MBD) (MethylC, RRBS, MeDIP)(MBD)	97.64 0.07	98.30 0	
	(MethylC, RRBS, MBD)(MeDIP)	0.07	0	
	(RRBS, MeDIP, MBD)(MethylC)	0.03	0.02	
	(MethylC, MeDIP)(RRBS, MBD) (MethylC, MBD)(RRBS, MBD)	0.01	0	

Sequencing methods compared to Infinium 27K Arrays

Pearson's r = 0.97

Pearson's r = 0.94

MethylC-seq

RRBS

•Methylation calls in 200bp windows: Beta value >0.2 highly methylated Beta value ≤0.2 weakly methylated

•MeDIP-Seq - 96.19% concordance •MBD-Seq - 90.80% concordance

Methylation Comparison Conclusions

All four methods yield comparable results but differ in CpG coverage, resolution and cost

- MethylC-Seq: genome-wide single base resolution, but requires most sequencing.
- **RRBS**: primarily CGI coverage at single base resolution.
- **MBD**: genome-wide ~150bp resolution, but least expensive. No non-CpG detection.
- **MeDIP**: genome-wide ~150bp resolution. Can be integrated with assays of unmethylated sites

Biological importance of intermediate methylation levels

1. Imprinting

2. Non-imprinted monoallelic methylation

3. Cell type-specific methylation

4. Sites of inter-individual variation in methylation level

Integrative Method

Catalog of intermediate methylation sites

 992 CpG Islands with overlap between MeDIP-seq and MREseq signals

Ting Wang, Washington University

Intermediate methylation levels at imprinted genes

Using Genetic Variation to Detect Monoallelic Epigenomic and Transcription States

- 1. Monoallelic DNA methylation (MRE and MeDIP)
- 2. Monoallelic expression (MethylC-seq and RNA-seq)
- 3. Monoallelic Histone H3K4me3 (MethylC-seq and Chip-seq)

Cristian Coarfa, BCM

Monoallelic Epigenomic Marks and Expression

DNA Methylation

MRE-seq + MeDIP-seq

Histone Methylation MethylC-seq + ChIP-seq

Intermediate methylation levels in POTEB

Assay specific SNPs showing allele specific methylation

MeDIP Allele Count: G 9 MRE Allele Count: A 30

Integrative Method Conclusions

- Integrative method can identify regions of intermediate methylation
- Regions of intermediate methylation can point to imprinted or other types of differentially methylated regions
- Sequence reads can be used to identify epigenomic or expression differences between alleles

Acknowledgements

NIH Roadmap Epigenomics Project

EDACC: Cristian Coarfa, Yuanxin Xi, Wei Li, Robert A. Waterland, Aleksandar Milosavljevic

UCSF/GSC REMC: Raman Nagarajan, Chibo Hong, Sara Downey, Brett E. Johnson, Allen Delaney, Yongjun Zhao, Marco Marra, Martin Hirst, Joseph Costello

- UCSC: Tracy Ballinger, David Haussler
- Washington University: Xin Zhou, Kevin J Forsberg, Junchen Gu, Ting Wang
- UCD: Lorigail Echipare, Henriette O'Geen, Peggy J. Farnham

UCSD REMC: Ryan Lister, Mattia Pelizzola, Bing Ren, Joseph Ecker

– Cold Spring Harbor: Wen-Yu Chung, Michael Q. Zhang

Broad REMC: Hongcang Gu, Christoph Bock, Andreas Gnirke, Chuck Epstein, Brad Bernstein, Alexander Meissner